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Abstract—The concept of continuous-aperture multiple-input
multiple-output (CAP-MIMO) technology has been proposed
recently, which aims at achieving high spectrum efficiency by
deploying extremely dense antennas or even continuous antennas
in a given aperture. The fundamental question of CAP-MIMO is
whether it can achieve much better performance than the tradi-
tional discrete MIMO system. In this paper, we propose a non-
asymptotic performance comparison scheme between continuous
and discrete MIMO systems based on the analysis of mutual
information. We show the consistency of the proposed scheme
by proving that the mutual information between discretized
transceivers converges to that between continuous transceivers.
Numerical analysis verifies the theoretical results, and suggests
that the mutual information obtained from the discrete MIMO
with widely adopted half-wavelength spaced antennas almost
achieves the mutual information obtained from CAP-MIMO.

Index Terms—Multiple-input multiple-output (MIMO),
Continuous-aperture MIMO (CAP-MIMO), mutual information,
random fields, Fredholm determinant.

I. INTRODUCTION

The spectrum efficiency of wireless communication systems
has been greatly improved from 3G to 5G because of the use
of multiple-input multiple-output (MIMO) technology [1]–[3].
Along with the tendency of increasing the number of antennas
to achieve higher spectrum efficiency, people are considering
deploying extremely dense antennas or even continuous antenna
in a given aperture [4], [5]. The MIMO with extremely dense
antennas is called continuous-aperture MIMO (CAP-MIMO),
and is also called holographic MIMO [6]–[8] or large intelligent
surface [4], [9] in the recent literature. It has attracted increasing
interest in the research of MIMO technology. Recent works
about CAP-MIMO include pattern optimization [5], antenna
design [10], channel estimation [6], and so on. For CAP-
MIMO, the fundamental question is whether the CAP-MIMO
system can achieve much better performance than the tradi-
tional discrete MIMO system.

A. Related works

There are many structures with different antenna spacing for
realizing the discrete MIMO. Therefore, we need to choose
which structure of the discrete MIMO to compare with CAP-
MIMO. A representative structure of discrete MIMO uses half-

wavelength spaced antennas to compose the transceivers [11]–
[13], because half-wavelength sampling of the electromagnetic
field can reconstruct the original field according to the sampling
theorem.

There have been several works discussing the performance
comparison between CAP-MIMO and discrete MIMO with
half-wavelength spaced antennas from the perspective of degree
of freedom (DoF). According to the Nyquist sampling theorem
[14], half-wavelength sampling for a field observed in the
infinitely large region can perfectly recover the original field
[15]. For a rigorous analysis framework of the DoF in a finitely
large aperture, the prolate spheroidal wave function (PSWF)
[16] is introduced to perform orthogonal expansion on the
electromagnetic field. Such an electromagnetic field observed
in a finitely large region can be approximately reconstructed
from a finite number of PSWFs. If the reconstruction error can
be controlled within a given threshold by using N0 PSWFs, the
number of DoFs of the field can be approximated by N0 [17].

This analyzing scheme is strict, but can only provide the
asymptotic result of the DoF, i.e., the quantitative result of
N0 can be obtained only when the length of the region or
the frequency tends to infinity. Under this assumption, N0

equals the number of antennas under half-wavelength sampling.
However, the practical systems are with finitely large aperture
and finite frequency. The asymptotic result can not provide
quantitative number of DoFs for practical systems. Therefore,
a non-asymptotic performance comparison scheme between
CAP-MIMO and discrete MIMO is required for the accurate
performance comparison with finitely large apertures.

B. Our contributions

To solve this problem, in this paper, we provide a non-
asymptotic performance comparison scheme between CAP-
MIMO and discrete MIMO, and we further prove the rationality
of the scheme. Specifically, the contributions of this paper can
be summarized as follows:

• We build models of CAP-MIMO and discrete MIMO
based on electromagnetic theory. For CAP-MIMO with
continuous transceivers, we model the structural charac-
teristics of the continuous random electromagnetic fields
from physical laws by using self-adjoint operators. Based979-8-3503-1090-0/23/$31.00 © 2023 IEEE



on this model, we can utilize the spectrum theory of
operators to derive the information that can be obtained
from the received field. The existing models of MIMO
with discrete transceivers are spatially discretized from the
continuous model. Moreover, signal-to-noise ratio (SNR)
control schemes are introduced to ensure the fairness of
the comparison between CAP-MIMO and discrete MIMO.

• Then, we prove that the mutual information between the
discrete transceivers converges to the mutual informa-
tion between continuous transceivers when the number
of antennas of the discretized transceivers tends to in-
finity. Therefore, the continuous model in our paper is
compatible with the existing discrete models, and the
fairness of the performance comparison is guaranteed.
Numerical results are provided to verify the theoretical
analysis. Moreover, it shows the near-optimality of the
half-wavelength sampling of the transceivers in traditional
discrete MIMO.

Notation: bold characters denote matrices and vectors; j is
the imaginary unit; E [x] denotes the mean of random variable
x; x∗ denotes the conjugation of a number or a function x;
XH denotes the conjugate transpose of a vector or a matrix
X; |ϕ⟩ is the quantum mechanical notation of a function ϕ,
where the inner product is denoted by ⟨ψ|ϕ⟩; det(·) denotes the
matrix determinant or the Fredholm determinant; tr(·) denotes
the trace of a matrix or an operator. Im denotes the m × m
identity matrix, 1 denotes the identity operator, δ(x) denotes
the delta function, and 1i=j denotes the indicator function; |x|
denotes the modulus of a complex variable, and ∥f(x)∥L∞(a,b)

is the uniform norm of the function f(x) over the interval [a, b].
C∞(K) denotes the set of smooth functions supported on a
compact set K.

II. MODELS OF CONTINUOUS AND DISCRETE SYSTEMS

In this section, we introduce the models of continuous and
discrete systems for performance comparison between CAP-
MIMO and discrete MIMO. We control the SNR at the receiver
side to ensure the fairness of the comparison. The information
obtained from these models is derived from operators and
matrices.

A. Basic model of electromagnetic information theory

To model the transceivers and the channel, we follow the
approach of electromagnetic information theory (EIT). The
EIT is an interdisciplinary subject that integrates the classical
electromagnetic theory and information theory to build an
analysis framework for the ultimate performance bound of
wireless communication systems [18]. The analysis framework
of EIT is based on spatially continuous electromagnetic fields,
which provides us the tool to model and analyze the continuous
transceivers. Then, for the consistency, the model of discrete
transceivers are viewed as the discretization of the continuous
model from EIT.

The model of EIT is built on the vector wave equation [19]
without boundary conditions, which is expressed by

∇×∇×E (r)− κ20E (r) = jωµ0J (r) = jκ0Z0J (r) , (1)

where κ0 = ω
√
µ0ε0 is the wavenumber, and Z0 = µ0c =

120π [Ω] is the free-space intrinsic impedance.
We assume that the transceivers are confined in two regions

Vs and Vr, separately. The current density at the source is J(s),
where s ∈ R3 is the coordinate of the source. The induced
electric field at the destination is E(r), where r ∈ R3 is the
coordinate of the field observer. To solve the vector wave equa-
tion, a general theoretical approach is to introduce the dyadic
Green’s function G(r, s) ∈ C3×3. The electric field E(r)
can be expressed by E(r) =

∫
Vs

G(r, s)J(s)ds, r ∈ Vr.
By exploiting the symmetric properties of the free space, the
Green’s function in unbounded, homogeneous mediums at a
fixed frequency point is [20]

G(r, s) =
jκ0Z0

4π

(
I+

∇r∇H
r

κ20

)
ejκ0∥r−s∥

∥r− s∥
, (2)

where p̂ = p
∥p∥ and p = r− s.

Since there are some non-ideal factors at the receiver that
corrupts the received field, we call them the noise field N(r).
The received electric field can be expressed by Y(r) =
E(r) +N(r). The above equations represent the deterministic
model in the electromagnetic theory. To satisfy the demand
of wireless communication, we need to convey information
through the electromagnetic field. Specifically, the wireless
communication system encodes the information in the current
J(s), and decodes the information from the noisy electric field
Y(r). Due to the randomness of the transmitted bit source, the
electromagnetic fields are randomly excited by the transmitter
equipment before being radiated into the propagation media.
Therefore, the electromagnetic fields should be modeled as
random fields [21], and we adopt the Gaussian random fields
to depict the statistical characteristics of the fields. We denote
the autocorrelation function of the current and the electric
field as matrix-valued functions RJ(s, s

′) = E[J(s)JH(s′)] and
RE(r, r

′) = E[E(r)EH(r′)]. The relationship between RJ and
RE is determined by the Green’s function, which is

RE(r, r
′) =

∫
Vs

∫
Vs

G(r, s)RJ(s, s
′)GH(r, s)dsds′. (3)

Similar definitions of the autocorrelation functions for the noise
field and the noisy electric field are represented as RN(r, r′) =
E[N(r)NH(r′)] and RY(r, r′) = E[Y(r)YH(r′)].

B. Continuous transceivers

In this part, we will build the model of CAP-MIMO with
continuous transceivers based on the EIT model in the above
subsection, and then derive the mutual information between the
continuous transceivers. For simplicity, in the rest part of the



paper, we assume that the transceivers are linear along the ẑ-
direction. Moreover, since the current J can only exist on the
linear source and we only observe the electric field on the linear
receiver, we express all the physical quantities in a Cartesian
coordinate system that satisfies s = (0, 0, s) and r = (d, 0, r),
where d is the distance between the parallel source and desti-
nation line. This model corresponds to single-polarized linear
antennas. Through this simplification scheme, we use J(s) and
E(r) instead of J(s) and E(r). The relationship between them
can be expressed by E(r) =

∫ l

0
G(r, s)J(s)ds, where G(r, s) is

the bottom-right element of the matrix G(r, s), i.e., G = G3,3.
We can derive G(r, s) as

G(r, s) =
jZ0e

j2π
√
x2+d2/λ

2λ
√
x2 + d2

[ j

2π
√
x2 + d2/λ

d2 − 2x2

x2 + d2

+
d2

x2 + d2
− 1

(2π/λ)
2
(x2 + d2)

d2 − 2x2

x2 + d2

]
,

(4)

where x = r − s and λ = 2π/κ0 is the wavelength.
Here we consider the scenario with no channel state infor-

mation, which means that the signals on the source are under
equal power allocation. The second moments (autocorrelation)
of J are denoted by RJ(s, s

′) = Pδ(s − s′), s, s′ ∈ [0, l].
Since the noiseless received field is uniquely determined by
the source and the deterministic channel, the autocorrelation
function of the electric field is expressed by the source auto-
correlation RJ(s, s

′) and the Green’s function G(r, s), written
as RE(r, r

′) = P
∫ l

0
G(r, s)G∗(r′, s)ds.

The received field on the destination is Y (r) = E(r)+N(r),
where N(r) is the noise field at the receiver. In this paper, we
consider thermal noise model E [N(r)N∗(r′)] = n0

2 δ(r − r′).
According to [22], we can perform Mercer expansion on
the electric field E(r) to obtain a set of mutually inde-
pendent random variables ξk. The expansion can be written
as E(r) =

∑
k ξkϕk(r), where E[ξki

ξ∗kj
] = λki

1i=j and
⟨ϕki

(r)|ϕkj
(r)⟩ = δkikj

. This expansion scheme has split the
continuous field into independent components. Since the white
noise field can be expanded under arbitrary orthogonal bases,
the continuous channel is also decomposed into independent
subchannels, which makes the mutual information of the sub-
channels summable.

For the self-adjoint operator TE := ϕ(r) →∫ l

0
KE(r, r

′)ϕ(r′)dr′, where KE(r, r
′) = RE(r, r

′) =

P
∫ l

0
G(r, s)G∗(r′, s)ds, all of its eigenvalues are real and

nonnegative. From [23] we know that an integral operator on
[a, b] is a trace class operator if its kernel K(x, y) satisfies
K(x, y) and ∂yK(x, y) are continuous on [a, b]2. Therefore
TE is a trace class operator, which means that the sum of its
eigenvalues is finite and can be expressed by [24]

tr(TE) =

∫ l

0

KE(r, r)dr = P

∫ l

0

∫ l

0

G(r, s)G∗(r, s)drds.

(5)

Corollary 1: The non-negative values λk

n0/2
represent the

SNR of the independent subchannels. The mutual information
between the noisy received field and the current on the source
can be expressed by

I0(J ;Y ) =

+∞∑
k=1

log

(
1 +

λk
n0/2

)
. (6)

By introducing the Fredholm determinant which is the de-
terminant of operators [25], we can express (6) by I0(J ;Y ) =

log det
(
1+ TE

n0/2

)
, where (TEϕ)(r) :=

∫ L

0
RE(r, r

′)ϕ(r′)dr′

and λk are the eigenvalues of TE .

C. Discrete transceivers

In this subsection, we will introduce a model which dis-
cretizes the transceivers simultaneously. Specifically, we build
a model with m1 point antennas on a length-l segment in the
source region and m2 point antennas on a length-l segment in
the destination region. We assume that the ith point antenna is
placed at si in the source region and ri in the destination region.
The correlation matrix of the signals in the source region is set
to be an identity matrix K

′

J = P Im1
, which corresponds to the

power allocation scheme with no channel state information at
the transmitter. The channel gain from the ith antenna in the
source region and the jth antenna in the destination region can
be expressed by Hi,j = G(ri, sj). The correlation matrix of
the received signal is denoted by K

′

E = HK
′

JH
H. The noise

matrix is denoted by K
′

N = n1

2 Im2 .
We control the signal-to-noise ratio (SNR) of this model

the same as that of the continuous model to ensure the
fairness of the comparison. The SNR at the receiver of the
continuous model is

∑∞
i=1

λi

n0/2
, where λi is the ith eigenvalue

of the operator TE . From (5) we know that
∑∞

i=1
λi

n0/2
=

P
n0/2

∫ l

0

∫ l

0
G(r, s)G∗(r, s)drds is finite. The SNR at the re-

ceiver of the discrete model is
∑m2

i=1
λ′
i

n1/2
, where λ′i is the ith

eigenvalue of the matrix K
′

E . Then, we have
∑∞

i=1
λi

n0/2
=∑m2

i=1
λ′
i

n1/2
, which leads to

n1 = n0

∑m2

i=1

∑m1

j=1G(ri, sj)G
∗(ri, sj)∫ l

0

∫ l

0
G(r, s)G∗(r, s)drds

. (7)

We denote the determinant of matrix K ∈ Cm×m

by det(Ki,j)
m
i,j=1. The mutual information between the

transceivers is expressed as:

I1 = log

(
det(K

′

N +K
′

E)

det(K
′
N )

)

= logdet

(
1i=j +

∑m1

k=1G(ri, sk)G
∗(rj , sk)

n1/2

)m2

i,j=1

.

(8)



III. COMPARISON BETWEEN CONTINUOUS AND DISCRETE
TRANSCEIVERS

In the above section we have built the models with continu-
ous and discrete transceivers. In this section we will compare
the mutual information between continuous transceivers and
that between discrete transceivers. Numerical analysis is then
provided to verify the theoretical analysis, and show the near-
optimality of the half-wavelength sampling scheme.

A. Convergence analysis of the mutual information

The analysis in this section focuses on the difference between
I0 and I1. We define I

′

0 = logdet
(
1+ m1m2TE

l2n1/2

)
as an

intermediate variable.
First we will use the following lemma to show the error

bound of a multivariate quadrature rule, which is a direct
deduction from [26]

Lemma 1:∣∣∣∣∣Qn
m(Kn)−

∫
[0,l]n

Kn(x1, · · · , xn)dx1 · · · dxn

∣∣∣∣∣
⩽ ln−1

n∑
i=1

Ei,

(9)

where Qn
m(Kn) =

∑m
j1,··· ,jn=1

∏n
i=1 wjiKn(rj1 , · · · , rjn) is

the multivariate numerical approximation of the integral, Ei =∣∣∣Qi(Kn;xi)−
∫ l

0
Kn(x1, · · · , xn)dxi

∣∣∣ is the approximation
error of the integral on one variable, and Qi(Kn;xi) :=∑

ji
wjiKn(x1, · · · , xi = rji , · · · , xn).

Then we will use Lemma 1 to discuss the convergence of
|I0 − I

′

0| in the following lemma:
Lemma 2: The mutual information I

′

0 converges to the
mutual information I0. The difference

∣∣∣I0 − I
′

0

∣∣∣ is at most
inverse-proportional to (min(m1,m2))

2.
Proof: From the SNR control scheme of discrete

transceivers (7) and the multivariate m-point composite mid-
point quadrature rule, we have (10) where g(x, y, z) :=
G(x, z)G∗(y, z), ri = (i−0.5)l/m2, and sj = (j−0.5)l/m1. It
is obvious that n1/(m1m2) converges to n0/l2 when m1 → ∞
and m2 → ∞. We denote the minimum value of n1/(m1m2)
by c.

Since the Fredholm determinant f(z) = det(1 + zTE) is
an analytic function, we know from mean value theorem that
∃x ∈ [min(z, z1),max(z, z1)]:

|det(1+ zTE)− det(1+ z1TE)|

= |z − z1|
∣∣∣∣∂det(1+ xTE)

∂x

∣∣∣∣ . (11)

In our assumption z = 2
n0

and z1 = 2m1m2

l2n1
. We have that

|z − z1| ⩽
2

n0l2c
|n0 −

l2

m2m1
n1|. (12)

The analycity of det(1 + zTE) implies that ∂det(1+xTE)
∂x is

also an analytic function and is bounded on the interval
[min(z, z1),max(z, z1)].

Then, according to (11), we know that∣∣∣det(1+ 2
n0
TE)− det(1+ 2m1m2

l2n1
TE)

∣∣∣ converges to 0

when m1 → ∞ and m2 → ∞. For |I0 − I
′

0| we have

|I0 − I
′

0| ⩽
|det(1+ 2

n0
TE)− det(1+ 2m1m2

l2n1
TE)|

min(det(1+ 2
n0
TE),det(1+ 2m1m2

l2n1
TE))

. (13)

Therefore, |I0 − I
′

0| converges to 0, and the difference is at
most inversely proportional to (min(m1,m2))

2.
After clarifying that I

′

0 converges to I0, we introduce the
following lemma from [27]:

Lemma 3: Define d(z) := det(1 + zT ) and dQ(z) :=
det (1i=j + wjzK(ri, rj))

m
i,j=1, where K is the kernel of the

integral operator T := ϕ(x) →
∫
[a,b]

K(x, y)ϕ(y)dy. The
difference between d(z) and dQ(z) is

d(z)− dQ(z) =

∞∑
n=1

zn

n!

(
Qn

m(Kn)

−
∫
[a,b]n

Kn(x1, · · · , xn)dx1 · · · dxn

)
,

(14)

where Kn(x1, · · · , xn) = det (K(xi, xj))
n
i,j=1, and

Qn
m(Kn) =

∑m
j1=1,··· ,jn=1

∏n
i=1 wjiKn(rj1 , · · · , rjn).

Then we will discuss the convergence of |I1 − I
′

0| in the
following lemma:

Lemma 4: The difference
∣∣∣I1 − I

′

0

∣∣∣ approaches 0 when m

approaches infinity. Moreover, it is at most inverse-proportional
to (min(m1,m2))

2.
Proof: The main idea of the proof is to

introduce the Fredholm determinant and its dis-
cretization by d(z) = det(1 + zT ) and dV (z) =
det
(
1i=j + w′

jz
∑m1

k=1 wkG(ri, sk)G
∗(rj , sk)

)m2

i,j=1
, where

K(xi, xj) =
∫ l

0
G(xi, s)G

∗(xj , s)ds is the kernel of the
operator T . Note that dV (z) is a further discretization on
dQ(z) in Lemma 3 by discretizing K(ri, rj). Through some
mathematical tricks, we can bound the difference between
d(z) and dV (z) by using Lemma 1, Lemma 3 and other tools
like the Hadamard’s inequality [28]. For space limitation, the
detailed proof is omitted.
Therefore, we have Theorem 1:

Theorem 1: The mutual information I1 that can be obtained
from the discrete transceivers converges to the mutual informa-
tion I0 that can be obtained from the continuous transceivers
when the number of antennas in the discrete transceivers in-
creases. The difference |I0−I1| is at most inverse-proportional
to the square of m, where m = min(m1,m2).

Remark 1: Insight about the sampling numbers: Theo-
rem 1 reveals the convergence of |I0 − I1| with respect to
m = min(m1,m2). It shows that the mutual information of



∣∣∣∣n0 − l2

m2m1
n1

∣∣∣∣ = n0∫ l

0
K(r, r)dr

∣∣∣∣∣∣
∫ l

0

∫ l

0

g(r, r, s)dsdr − l2

m1m2

m2,m1∑
i=1,j=1

g(ri, ri, sj)

∣∣∣∣∣∣
⩽

n0l
4

24m2
2

∫ l

0
K(r, r)dr

∥∥∥∥∂2g(r, r, s)∂r2

∥∥∥∥
L∞((0,l)2)

+
n0l

4

24m2
1

∫ l

0
K(r, r)dr

∥∥∥∥∂2g(r, r, s)∂s2

∥∥∥∥
L∞((0,l)2)

⩽
n0l

4

24(min(m1,m2))2
∫ l

0
K(r, r)dr

(∥∥∥∥∂2g(r, r, s)∂r2

∥∥∥∥
L∞((0,l)2)

+

∥∥∥∥∂2g(r, r, s)∂s2

∥∥∥∥
L∞((0,l)2)

)
,

(10)

the discrete MIMO system depends on both sampling numbers
m1 and m2 of the transceivers. They have some symmetry in
(10), which we will show further in the numerical analysis.
Moreover, if m2 > m1, then increasing m2 while m1 is fixed
will not apparently increase the mutual information that can be
obtained. Therefore, for mutual information, there is a short
board effect in the discretization of transceiver with dense
antennas.

Remark 2: Extension to other scenarios with power
allocation: The convergence analysis in this section is
not limited to the scenario with equal power alloca-
tion. For arbitrary analytic function RJ(s, s

′), the con-
vergence of |I0 − I1| can be obtained. Instead of
discretizing

∫
G(r, z)G∗(r′, z)dz to

∑
iG(r, ri)G

∗(r′, ri),
we will discretize

∫∫
G(r, z)RJ(z, z

′)G∗(r′, z′)dzdz′ to∑
i,j G(r, ri)RJ(ri, rj)G

∗(r′, rj) in the extended scenar-
ios with power allocation schemes. Then, instead of
g(x, y, z) we need a four-variable function h(x, y, z, ω) :=
G(x, z)RJ(z, ω)G

∗(y, ω) and the derivation procedure of the
convergence has no essential difference with Theorem 1 if the
smoothness of h(x, y, z, ω) is guaranteed.

B. Numerical analysis about the mutual information

In this subsection, we will verify the correctness of the con-
vergence analysis in the above subsection by simulations. The
length l of the transceivers is fixed to 2m. The wavelength of
the electromagnetic field is fixed to 0.04m, which corresponds
to the frequency of 7.5GHz.

First we will discuss the scenario where the transceivers
are both discretized to m point antennas. The simulation
results are shown in Fig. 1. From the simulation, we can
observe the convergence of the mutual information between the
discrete transceivers, which verifies the theoretical analysis. For
the three distances between transceivers, the half-wavelength
sampling almost achieves the supremum mutual information
between continuous transceivers.

Then, in Fig. 2, we show the change of mutual information
with respect to both m1 and m2, which are the sampling num-
ber of the transceivers. The distance d is 1m. We can find that,
as we have predicted in Remark 1, the figure is approximately
symmetric for m1 and m2. When we change the sampling
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Fig. 1. The mutual information as a function of the sampling numbers, where
the transceivers are with same sampling numbers.
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numbers of the transceivers simultaneously, the mutual infor-
mation increases obviously as the red line shows. When the
m2 is large enough in the rosy line, which corresponds to
dense antennas in the receiver, the mutual information will also
increase with m1. When m1 or m2 is small, which corresponds
to sparse antennas, increasing the other sampling number only
has a slight improvement on the mutual information, as the
blue line shows. Therefore, the shortboard effect determines
how the sampling numbers influence the mutual information.
Moreover, the near-optimality of the half-wavelength sampling
transceivers is also shown in Fig. 2.

IV. CONCLUSION

In this paper, we proposed a comparison scheme between
continuous and discrete MIMO systems which is based on a
precise non-asymptotic analysis framework. We proposed phys-
ically consistent SNR control schemes to ensure the fairness
of the comparison, and proved that the mutual information
between discrete MIMO transceivers converges to that between
continuous electromagnetic transceivers. Numerical results ver-
ified the theoretical analysis and showed the near-optimality of
the half-wavelength sampling scheme.

Further works can be done by considering the mutual cou-
pling of the antennas. The analysis based on the capacity
after water-filling of the mutual information also remains to
be explored.
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